

1	
2	
3	Aliphatic Carbonyl Compounds (C ₈ -C ₂₆) in Wintertime
4	Atmospheric Aerosol in London, UK
5	
6	Ruihe Lyu ^{1,2} , Mohammed Salim Alam ¹ , Christopher Stark ¹
7	Ruixin Xu ¹ , Zongbo Shi ² , Yinchang Feng ² and Roy M. Harrison ^{†*1}
8	
9	¹ Division of Environmental Health and Risk Management
10	School of Geography, Earth and Environmental Sciences, University of
11	Birmingham Edgbaston, Birmingham B15 2TT, UK
12	
13	² State Environmental Protection Key Laboratory of Urban Ambient Air
14	Particulate Matter Pollution Prevention and Control, College of Environmental
15	Science and Engineering
16	Nankai University, Tianjin 300350, China
17	
18	
19	
20 21	[†] Also at: Department of Environmental Sciences / Centre of Excellence in Environmental Studies King Abdulaziz University PO Roy 80203 Jeddah 21589 Saudi Arabia
22	Studies, King Abdulaziz Oniversity, 1 O Dox 60265, Seddah, 21565, Saddi Madda.
23	Corresponding authors:
24	E-mail: r.m.harrison@bham.ac.uk (Roy M. Harrison)
25	
26	

27 ABSTRACT

28	Three groups of aliphatic carbonyl compounds, the n-alkanals (C8-C20), n-alkan-2-ones (C8-C26)
29	and n-alkan-3-ones (C8-C19) were measured in air samples collected in London from January-April
30	2017. Four sites were sampled including two roof-top background sites, one ground-level urban
31	background site and a street canyon location on Marylebone Road in central London. The n-alkanals
32	showed the highest concentrations followed by the n-alkan-2-ones and the n-alkan-3-ones, the latter
33	having appreciably lower concentrations. It seems likely that all compound groups have both primary
34	and secondary sources and these are considered in the light of published laboratory work on the
35	oxidation products of high molecular weight n-alkanes. All compound groups show relatively low
36	correlation with black carbon and NOx in the background air of London, but in street canyon air
37	heavily impacted by vehicle emissions, stronger correlations emerge especially for the n-alkanals. It
38	appears that vehicle exhaust is likely to be a major contributor for concentrations of the n-alkanals
39	whereas it is a much smaller contributor to the n-alkan-2-ones and n-alkan-3-ones. Other primary
40	sources such as cooking may be significant but were not evaluated. It seems likely that there is also
41	a significant contribution from photo-oxidation of n-alkanes and this would be consistent with the
42	much higher abundance of the n-alkan-2-ones relative to the n-alkan-3-ones if the formation
43	mechanism were to be through oxidation of condensed phase alkanes. Vapour-particle partitioning
44	fitted the Pankow model well for the n-alkan-2-ones but less well for the other compound groups,
45	although somewhat stronger relationships were seen at the Marylebone Road site than at the
46	background sites.

47 Keywords: Carbonyl compounds; n-alkanals; n-alkan-2-ones; n-alkan-3-ones; organic aerosol;
48 partitioning;

49 1. INTRODUCTION

Carbonyl compounds are classified as polar organic compounds, constituting a portion of the oxygenated organic compounds in atmospheric particulate matter (PM). Aliphatic carbonyl compounds are directly emitted into the atmosphere from primary biogenic and anthropogenic sources (Schauer et al., 2001, 2002a, b), as well as being secondary products of atmospheric oxidation of hydrocarbons (Chacon-Madrid et al., 2010; Zhang et al., 2015; Han et al., 2016).

55

56 The most abundant atmospheric carbonyls are methanal (formaldehyde) and ethanal (acetaldehyde), 57 and many studies have described their emission sources and chemical formation in urban and rural 58 samples (Duan et al., 2016). Long-chain aliphatic carbonyl compounds have been identified in PM 59 and reported in few published papers (Gogou et al., 1996; Andreou and Rapsomanikis, 2009), and 60 these compounds are considered to be formed from atmospheric oxidation processes affecting 61 biogenic emissions of alkanes. Anthropogenic activity is also considered to be a significant 62 contributor to the aliphatic carbonyls. Appreciable concentrations of aliphatic carbonyl compounds 63 have been identified in emissions from road vehicles (Schauer et al., 1999), coal combustion (Oros 64 and Simoneit, 2000), wood burning (Rogge et al., 1998) and cooking processes (Zhao et al., 2007b, 65 a), spanning a wide range of molecular weights. Furthermore, chamber studies (Chacon-Madrid and 66 Donahue, 2011; Algrim and Ziemann, 2016) have demonstrated that the aliphatic carbonyl 67 compounds are very important precursors of secondary organic aerosol (SOA) when they react with 68 OH radicals in the presence of NO_x.

69

70 The oxidation of n-alkanes by hydroxyl radical is considered to be an important source of carbonyl 71 compounds. It was believed that the n-alkanals with carbon atoms numbering less than 20 indicate 72 oxidation of alkanes, whereas the higher compounds were usually considered to be of direct biogenic 73 origin (Rogge et al., 1998). The homologues and isomers of n-alkanals and n-alkanones have been 74 identified as OH oxidation products of n-alkanes in many chamber and flow tube studies (Zhang et 75 al., 2015; Schilling Fahnestock et al., 2015; Ruehl et al., 2013). The commonly accepted oxidation 76 pathways of n-alkanes generally divide into functionalization and fragmentation. Functionalization 77 occurs when an oxygenated functional group (-ONO₂, -OH, -C=O, -C(O)O- and -OOH) is added 78 to a molecule, leaving the carbon skeleton intact. Alternatively, fragmentation involves C-C bond 79 cleavage and produces two oxidation products with smaller carbon numbers than the reactant. The 80 chamber studies of dodecane oxidation have identified 1-undecanal, hexan-3-one, octan-3-one, 81 heptan-2-one, nonan-2-one and decan-2-one as OH oxidation products (Schilling Fahnestock et al., 82 2015; Yee et al., 2012).

83

84 In London, with a high population density and a large number of diesel engine vehicles, the aliphatic 85 hydrocarbons constitute an important fraction of ambient aerosols. Anthropogenic activities and 86 secondary formation favour the emission and production of carbonyl compounds within the city. The 87 objectives of the present study were the identification and quantification of aliphatic carbonyl 88 compounds in particle and vapour samples collected in London from January to April 2017. This 89 work has aided an understanding of the concentrations and secondary formation of carbonyls in the 90 London atmosphere. Spatial and temporal variations of the studied carbonyl compounds were 91 assessed and used to infer sources. One of the main objectives was to provide gas/particle partitioning

- 92 coefficients of identified carbonyls under realistic conditions. Diagnostic criteria were used to
- 93 estimate the sources of identifiable atmospheric carbonyl compounds. Additionally, for the first time,
- 94 concentrations of particulate and gaseous n-alkan-3-ones are reported.
- 95

96 2. MATERIALS AND METHODS

97 2.1 Sampling Method and Site Characteristics

98 Three sampling campaigns were carried out between 23 January and 18 April 2017 at four sampling 99 sites (Figure 1) in London. The first campaign used two sampling sites, one located on the roof of a 100 building (15 m above ground) of the Regent's University ($51^{\circ}31'N$, $-0^{\circ}9'W$), hereafter referred to as 101 RU, sampled from 23 January 2017 to 19 February 2017, the other located on the roof (20 m above 102 ground) of a building which belongs to the University of Westminster on the southern side of 103 Marylebone Road (hereafter referred to as WM), sampled from 24 January 2017 to 20 February 2017. 104 The third sampling site was located at ground level at Eltham $(51^{\circ}27'N, 0^{\circ}4'E)$, hereafter referred to 105 as EL, sampled from 23 February 2017 to 21 March 2017, which is located in suburban south London, 106 and the fourth sampling site was located at ground level on the southern side of Marylebone Road 107 (51°31'N, -0°9'W), hereafter referred to as MR, sampled from 22 March 2017 to 18 April 2017. 108 Marylebone Road is in London's commercial centre, and is an important thoroughfare carrying 80-109 90,000 vehicles per day through central London. The Regent's University site is within Regent's 110 Park to the north of Marylebone Road. The Eltham site is in a typical residential neighbourhood, 22 111 km from the MR site. Earlier work at the Marylebone Road and a separate Regent's Park site is 112 described by Harrison et al. (2012).

113	The particle samples were collected on polypropylene backed PTFE filters (47 mm, Whatman) which
114	preceded stainless steel sorbent tubes packed with 1cm quartz wool, 300 mg Carbograph 2TD 40/60
115	(Markes International, Llantrisant, UK) and sealed with stainless-steel caps before and after sampling.
116	Sampling took place for sequential 24-hour periods at a flow rate of 1.5 L min ⁻¹ using an in-house
117	developed automated sampler. Field blank filters and adsorption tubes were prepared for each site,
118	and recovery efficiencies were evaluated. After the sampling, each filter was placed in a clean sealed
119	petri dish, wrapped in aluminium foil and stored in the freezer at -18°C prior to analysis. Black carbon
120	(BC) was simultaneously monitored during the sampling period at RU and WM sites using an
121	aethalometer (Model AE22, Magee Science). Measurements of BC and NO _x at MR and NO _x at EL
122	were provided by the national network sites of Marylebone Road, and Eltham (https://uk-
123	air.defra.gov.uk/).

124

125 2.2 Analytical Instrumentation

126 The particle samples were analyzed using a 2D gas chromatograph (GC, 7890A, Agilent 127 Technologies, Wilmington, DE, USA) equipped with a Zoex ZX2 cryogenic modulator (Houston, 128 TX, USA). The first dimension was equipped with a SGE DBX5, non-polar capillary column (30.0 129 m, 0.25 mm ID, 0.25 mm - 5.00% phenyl polysilphenylene-siloxane), and the second-dimension 130 column equipped with a SGE DBX50 (4.00 m, 0.10 mm ID, 0.10 mm - 50.0% phenyl 131 polysilphenylene-siloxane). The GC × GC was interfaced with a Bench-ToF-Select, time-of-flight 132 mass spectrometer (ToF-MS, Markes International, Llantrisant, UK). The acquisition speed was 50.0 133 Hz with a mass resolution of >1200 fwhm at 70.0 eV and the mass range was 35.0 to 600 m/z. All 134 data produced were processed using GC Image v2.5 (Zoex Corporation, Houston, US).

135 2.3 Analysis of Samples

136	Standards used in these experiments included 19 alkanes, C_8 to C_{26} (Sigma-Aldrich, UK, purity
137	>99.2%); 12 n-aldehydes, C ₈ to C ₁₃ (Sigma-Aldrich, UK, purity \geq 95.0%), C ₁₄ to C ₁₈ (Tokyo
138	Chemical Industry UK Ltd, purity >95.0%); and 10 2-ketones, C_8 to C_{13} and C_{15} to C_{18} (Sigma-
139	Aldrich, UK, purity \geq 98.0%) and C ₁₄ (Tokyo Chemical Industry UK Ltd, purity 97.0%).
140	
141	The filters were spiked with 30.0 μL of 30.0 $\mu g~mL^{\text{-1}}$ deuterated internal standards (dodecane-d_{26},
142	pentadecane-d ₃₂ , eicosane-d ₄₂ , pentacosane-d ₅₂ , triacontane-d ₆₂ , butylbenzene-d ₁₄ , nonylbenzene-
143	2,3,4,5,6-d ₅ , biphenyl-d ₁₀ , p-terphenyl-d ₁₄ ; Sigma-Aldrich, UK) for quantification and then
144	immersed in dichloromethane (DCM), and ultra-sonicated for 20.0 min at 20.0°C. The extract was
145	filtered using a clean glass pipette column packed with glass wool and anhydrous Na ₂ SO ₄ , and
146	concentrated to 50.0 μL under a gentle flow of nitrogen for analysis using GC \times GC-ToF-MS. 1 μL
147	of the extracted sample was injected in a split ratio 100:1 at 300°C. The initial temperature of the
148	primary oven (80.0°C) was held for 2.0 min and then increased at 2.0 °C min ⁻¹ to 210°C, followed by
149	1.5 °C min ⁻¹ to 325 °C. The initial temperature of the secondary oven (120°C) was held for 2.0 min
150	and then increased at 3.0°C min ⁻¹ to 200°C, followed by 2.00°C min ⁻¹ to 300°C and a final increase
151	of 1.0°C min ⁻¹ to 330 °C to ensure all species passed through the column. The transfer line
152	temperature was 330 °C and the ion source temperature was 280°C. Helium was used as the carrier
153	gas at a constant flow rate of 1.0 mL min ⁻¹ . Further details of the instrumentation and data processing
154	methods is given by Alam et al. (2016a,b).

156	The sorbent tubes were analyzed by an injection port thermal desorption unit (Unity 2, Markes
157	International, Llantrisant, UK) and subsequently analyzed using $GC \times GC$ -ToF-MS. Briefly, the
158	tubes were spiked with 1 ng of deuterated internal standard for quantification and desorbed onto the
159	cold trap at 350°C for 15.0 min (trap held at 20.0°C). The trap was then purged onto the column in
160	a split ratio of 100:1 at 350°C and held for 4.0 min. The initial temperature of the primary oven
161	(90.0°C) was held for 2.0 min and then increased to 2.0°C min ⁻¹ to 240°C, followed by 3.0°C min ⁻¹
162	to 310°C and held for 5.0 min. The initial temperature of the secondary oven (40.0°C) was held for
163	2.0 min and then increased at 3.0°C min ⁻¹ to 250°C, followed by an increase of 1.5°C min ⁻¹ to 315°C
164	and held for 5.0 min. Helium was used as carrier gas for the thermally desorbed organic compounds,
165	with a gas flow rate of 1.0 mL min ⁻¹ .

166

167 *Qualitative analysis*

Compound identification was based on the GC×GC-TOFMS spectra library, NIST mass spectral library and in conjunction with authentic standards. Compounds within the homologous series for which standards were not available were identified by comparing their retention time interval between their homologues, and by comparison of mass spectra to the standards for similar compounds within the series, by comparison to the NIST mass spectral library and by the analysis of fragmentation patterns.

174

175 *Quantitative analysis*

176An internal standard solution (including dodecane- d_{26} , pentadecane- d_{32} , eicosane- d_{42} , pentacosane-177 d_{52} , triacontane- d_{62} , nonylbenzene-2,3,4,5,6- d_5 , butylbenzene- d_{14} , biphenyl- d_{10} , p-terphenyl- d_{14})

- 178 (Sigma-Aldrich, UK) was added to the samples to extract prior to instrumental analysis. Five internal
- 179 standards (pentadecane-d₃₂, eicosane-d₄₂, pentacosane-d₅₂, triacontane-d₆₂, nonylbenzene-2,3,4,5,6-
- 180 d₅) were used in the calculation of carbonyl compound concentrations.
- 181

182 The quantification for alkanes, aldehydes and 2-ketones was performed by the linear regression 183 method using seven-point calibration curves (0.05, 0.10, 0.25, 0.50, 1.00, 2.00, 3.00 ng μL^{-1}) 184 established between the authentic standards/internal standard concentration ratios and the 185 corresponding peak area ratios. The calibration curves for all target compounds were highly linear 186 $(r^2>0.99)$, from 0.990 to 0.997), demonstrating the consistency and reproducibility of this method. 187 Limits of detection for individual compounds were typically in the range 0.04–0.12 ng m⁻³. 3-ketones 188 were quantified using the calibration curves for 2-ketones. This applicability of quantification of 189 individual compounds using isomers of the same compound functionality (which have authentic 190 standards) has been discussed elsewhere and has a reported uncertainty of 24% (Alam et al., 2018).

191

Alkan-2-ones and alkan-3-ones were not well separated by the chromatography. These were separated
manually using the peak cutting tool, attributing fragments at m/z 58 and 71 to 2-ketones and m/z 72

and 85 to 3-ketones. The calibration for 2-ketones was applied to quantification of the 3-ketones.

195

Field and laboratory blanks were routinely analysed to evaluate analytical bias and precision. Blank
levels of individual analytes were normally very low and in most cases not detectable. Recovery
efficiencies were determined by analyzing the blank samples spiked with standard compounds. Mean

- 199 recoveries ranged between 78.0 and 102%. All quantities reported here have been corrected according
- 200 to their recovery efficiencies.

201

202 3. RESULTS AND DISCUSSION

203 3.1 Mass Concentration of Particle-Bound Carbonyl Compounds

204 Fig. 2 shows the average total concentrations of particle-bound 1-alkanals, n-alkan-2-ones, and n-205 alkan-3-ones from January to April at four measurement sites, and the particle and gaseous phase 206 concentrations are detailed in the Table S1 (Supporting Information). Total n-alkanals was defined 207 as the sum of particle-bound n-alkanals ranging from C_8 to C_{20} . The particulate n-alkanals at the MR 208 site accounted for 75.2% of the measured particle carbonyls with the average total concentration of 682 ng m⁻³, and concentrations at the other sites were 167 ng m⁻³ at EL, 117 ng m⁻³ at WM and 82.6 209 ng m⁻³ at RU, accounting for 57.0%, 57.9% and 56.3% of the measured particulate carbonyls, 210 211 respectively. The n-alkanals identified in this study differed in some aspects from those previously 212 reported in samples collected from Crete (Gogou et al., 1996) and Athens (Andreou and 213 Rapsomanikis, 2009) in Greece. The n-alkanals from London presented narrower ranges of carbon 214 numbers and a higher concentration than rural and urban samples from Crete. The concentrations of 215 n-alkanal homologues (C_8 - C_{20}) ranged from 5.50 to 141 ng m⁻³ (average 52.0 ng m⁻³) at MR which were far higher than 1.48-28.6 ng m⁻³ (average 6.44 ng m⁻³) at RU, 1.42-50.3 ng m⁻³ (average 9.03) 216 ng m⁻³) at WM and 3.29-53.0 ng m⁻³ (average 13.0 ng m⁻³) at EL (Table S1), unlike Crete where the 217 concentrations were 0.9-3.7 ng m⁻³ in rural (C_{15} - C_{30}) and 5.4-6.7 ng m⁻³ in urban (C_9 - C_{22}) samples, 218 219 and the average concentration of all four sites was much higher than the 0.91 ng m⁻³ measured in 220 Athens (Andreou and Rapsomanikis, 2009) (C13-C20).

221	As part of the CARBOSOL project (Oliveira et al., 2007), air samples were collected in summer and
222	winter at six rural sites across Europe. The particulate n-alkanals ranged from C_{11} to C_{30} with average
223	total concentrations between 1.0 ng m ⁻³ and 19.0 ng m ⁻³ , with higher concentrations in summer than
224	winter at all but one site. These concentrations fall well below those measured in the present study,
225	although the range of compounds differed. Maximum concentrations at all sites were in
226	compounds $>C_{22}$ indicating a source from leaf surface abrasion products and biomass burning. This
227	far exceeds the C_{max} values seen in the particulate fraction at our sites.

228

229 The n-alkan-2-one homologues measured in London ranged from C₈ to C₂₆, and the average total

230 particulate fraction concentration was 58.5 ng m⁻³ at RU, 75.1 ng m⁻³ at WM, 112 ng m⁻³ at EL and

231 186 ng m⁻³ at MR, approximately accounting for 39.9% (RU), 37.0% (WM), 38.1% (EL) and 20.5%

232 (MR) of the total particulate carbonyls, respectively (Fig. 2). The published data from Greece

233 indicated that the concentrations of n-alkan-2-ones were independent of the seasons, and an average

of 5.40 ng m⁻³ (C_{13} - C_{29}) was measured in August and 5.44 ng m⁻³ in March at Athinas St, but 12.88

235 ng m⁻³ was measured in March at the elevated (20 m) AEDA site in Athens (Gogou et al. (1996).

236 Concentrations in Crete for alkan-2-ones (C_{10} - C_{31}) were 0.4-2.1 ng m⁻³ at the rural site and 1.9-2.6

237 ng m⁻³ at the urban site (Andreou and Rapsomanikis, 2009).

238

239 The CARBOSOL project also determined concentrations of n-alkan-2-ones, between C₁₄ and C₃₁

240 with a C_{max} at C_{28} or C_{29} at all but one site. Average concentrations ranged from 0.15 ng m⁻³ (C_{17-29})

- to 3.35 (C₁₄-C₃₁), very much below the concentrations at our London sampling site. Cheng et al.
- 242 (2006) measured concentrations of n-alkan-2-ones in the Lower Fraser Valley, Canada, in PM_{2.5}.

243	Samples collected in a road tunnel showed the highest concentrations, total 1.8-12.6 ng m ⁻³ for C_{10} -
244	C_{31} , and were higher in daytime than nighttime. Concentrations at a forest site were 1.1-7.2 ng m ⁻³
245	without a diurnal pattern. Values of C_{max} ranged from C_{16-17} at the road tunnel to C_{27} (secondary
246	maximum) at the forest site. Values of CPI averaged across sites from 1.00 to 1.34, giving little
247	evidence for a substantial biogenic input from higher plant waxes.
248	
249	Atmospheric concentrations of long-chain n-alkan-3-ones have not previously been reported in the
250	literature. The n-alkan-2-one and n-alkan-3-one homologues with few carbon atoms are believed
251	mainly to originate as the fragmental products of n-alkanes (Yee et al., 2012; Schilling Fahnestock
252	et al., 2015), whereas the higher compounds are mainly generated from functional pathways (Zhang
253	et al., 2015; Ruehl et al., 2013). The n-alkan-3-one homologues identified in the samples ranged
254	from C_8 to C_{19} , and the average of individual compound concentrations was 0.52 ng m ⁻³ at RU, 0.94
255	ng m ⁻³ at WM, 1.37 ng m ⁻³ at EL and 3.34 ng m ⁻³ at MR. The concentrations of n-alkan-3-ones at
256	the four sites were lower than the n-alkanals and n-alkan-2-ones, and MR had the highest average
257	total mass concentrations 39.4 ng m ⁻³ , followed by 14.3 ng m ⁻³ at EL, 10.4 ng m ⁻³ at WM and 5.65

258 ng m⁻³ at RU, respectively.

259

260 Recently published studies have found that the isomeric distribution of first-generation oxidation 261 products of n-alkanes depends strongly upon whether the reaction occurs in the gas phase or at the 262 particle surface (Kwok and Atkinson, 1995; Ruehl et al., 2013). The homogeneous gas-phase 263 oxidation occurs fast, and H-abstraction by OH radicals occurs at all carbon sites. The fractions of 264 the OH radical reaction by H atom abstraction from n-decane at the 1-, 2-, 3-, 4- and 5-positions are

265 3.10%, 20.7%, 25.4%, 25.4%, and 25.4%, respectively, and the products from homogeneous reaction 266 were generally in accord with structure-reactivity relationship (SRR) predictions (Kwok and 267 Atkinson, 1995; Aschmann et al., 2001). Reaction of particulate n-alkanes is dominated by 268 heterogeneous reactions with OH, and the H-abstraction occurs preferentially at the 2-position of the 269 carbon chain (Zhang et al., 2015; Ruehl et al., 2013). The n-alkanes diffuse from the inner particle to 270 the surface, where the OH will quickly attack the H atom of 1 and 2 position carbons. The intermediate 271 products at the 2-position are relatively more stable than at the 1-position, and the products are 272 dominated by oxidation of the 2-position. The isomeric carbonyls formed via OH-initiated 273 heterogeneous reactions of n-octacosane (C_{28}) exhibit a pronounced preference at the 2-position of 274 the molecule chain¹⁸. The n-octacosan-2-ones have the highest relative yield (1.00), followed by n-275 octacosan-3-ones (0.50), while other isomeric carbonyl yields were lower than 0.20. The same results 276 were found in the subsequent chamber studies of n-alkanes (Zhang et al., 2015) (C₂₀, C₂₂, C₂₄) but 277 not C_{18} . The main reason was that OH oxidation of C_{18} was dominated by the homogeneous reaction 278 as a large fraction of C_{18} evaporated into the gas phase.

279

During the field experiment, the 1-alkanal homologues were abundant in all samples, and this could be explained by a strong impact of anthropogenic activities. Thus, the n-alkanals are considered to arise mainly from primary emission sources. Furthermore, the particulate form of the n-alkane homologues (C_{14} - C_{36}) identified in the samples ranged from 50-100% in contrast to the low MW nalkanes (C_{11} - C_{13}). The H-abstraction by OH radicals may therefore have been dominated by heterogeneous reactions generating the higher concentrations of n-alkan-2-ones than n-alkan-3-ones that were found in all samples. The ratio of n-alkan-2-ones/n-alkan-3-ones (C_{11} - C_{18}) with the same

carbon atom number ranged from 2.35-11.3 at four measurement sites. Surprisingly, although the nalkane (C_{11} - C_{13}) oxidation was expected to be dominated by homogeneous reactions, the n-alkan-2one/n-alkan-3-one ratios were still greater than 2.00. The probable reason was that the lower molecular weight n-alkan-2-ones were significantly impacted by primary emission sources. Another likely reason is that the n-alkan-2-one and n-alkan-3-one homologues with lower carbon atom numbers originated in part from the fragmental products of higher n-alkanes (Yee et al., 2012; Schilling Fahnestock et al., 2015).

294

295 The ratios of n-alkan-2-ones/n-alkanes, n-alkan-3-ones/n-alkanes (with same carbon numbers) were 296 calculated and are reported in Table S2. The n-alkan-3-ones with carbon numbers higher than C_{20} 297 were not identified in the samples, indicating that both the homogeneous and heterogeneous reactions 298 of higher molecular weight n-alkanes were slow, the former probably due to the low vapour phase 299 presence of n-alkanes. The ratios of n-alkan-3-ones/n-alkanes at four measurement sites gradually 300 increased from C_{11} and then decreased from C_{17} , while higher ratios of n-alkan-2-ones/n-alkanes were 301 observed in the range from C_{17} to C_{22} , probably indicating a shift from homogeneous reactions to 302 heterogeneous reactions with the increase of carbon numbers. The low ratios of n-alkan-2-ones/n-303 alkanes with carbon numbers from C_{23} to C_{26} were attributed to the low diffusion rate from the inner 304 particle to the surface with the increasing carbon number of n-alkanes, even though heterogeneous 305 reactions were the dominant pathway.

306

307

308

309 3.2 Temporal and Spatial Variations

- 310 The study of temporal and spatial variations of air pollutants can provide valuable information about
- 311 their sources and atmospheric processing. The time series of particle-bound n-alkanals, n-alkan-2-
- 312 ones, and n-alkan-3-ones are plotted in Fig. 3. It is clear that the concentrations of n-alkanals varied
- 313 substantially with date, and were always higher than n-alkanones at four sites. It is also clear from
- 314 Figure 2 that concentrations were broadly similar at the background sites, RU, WM and EL, but are
- 315 elevated, especially for the n-alkanals, at MR. This is strongly indicative of a road traffic source.

316

317 3.3 Sources of Carbonyl Compounds

318 3.3.1 Homologue distribution and carbon preference index (CPI)

- 319 Fig. 4 shows the average concentrations, and molecular distributions of particle-bound carbonyl
- 320 compounds at the four sites. The values of carbon preference index (CPI) were calculated to estimate

321 the origin of carbonyl compounds, according to Bray and Evans (1961):

322

324 For n-alkanals and n-alkan-3-ones (m=9):CPI =
$$\frac{1}{2} \left(\frac{\sum odd(C_9 - C_{19})}{\sum even(C_8 - C_{18})} + \frac{\sum odd(C_9 - C_{19})}{\sum even(C_{10} - C_{20})} \right)$$

325 For n-alkan-2-ones (m=12): CPI = $\frac{1}{2} \left(\frac{\sum odd(C_9 - C_{25})}{\sum even(C_8 - C_{24})} + \frac{\sum odd(C_9 - C_{25})}{\sum even(C_{10} - C_{26})} \right)$

326

327 where *i* takes values between 4 and *m*, and 5 and *m* as in the equation, and

328 m = 9 for n-alkanal and n-alkan-3-ones

329 m = 12 for n-alkan-2-ones

- 330 The carbon maximum number (C_{max}) was used to evaluate the relative contribution of the source and 331 exhibit the homologue distribution of highest concentration. Table. 1 presents the CPI and C_{max} of
- 332 particle-bound carbonyl compounds calculated in the current and other studies.
- 333 According to the low CPI (0.41-1.07) at four sites, the n-alkanal homologues with carbon number 334 from C_8 to C_{20} mainly originate from anthropogenic emissions or OH oxidation of anthropogenic 335 hydrocarbons. The particle-bound n-alkanals exhibited a similar distribution of carbon number from 336 January to April at four sites, and they had the same C_{max} at C_8 with concentration 28.6 ng m⁻³ at RU, 50.3 ng m⁻³ at WM, 53.0 ng m⁻³ at EL and 141 ng m⁻³ at MR, respectively. This compound may 337 338 be a fragmentation product, oxidation product or primary emission. In addition, the distribution of 339 n-alkanals had a second concentration peak at C_{15} (MR) and C_{18} (RU, WM, and EL). The C_{18} 340 compound was observed accounting for the highest percentage of the total mass of n-alkanals in 341 some rural aerosol samples (Gogou et al., 1996) in Crete. Andreou and Rapsomanikis reported the 342 C_{max} as C_{15} or C_{17} in Athens (Andreou and Rapsomanikis, 2009) and attributed this to the oxidation 343 of n-alkanes. However, a Cmax at C26 or C28 in urban Crete (Gogou et al., 1996) was observed, 344 suggestive of biogenic input. The homologue distribution and CPI of n-alkanals in this study differed 345 from those previous reports, and demonstrated weak biogenic input and a strong impact of 346 anthropogenic activities in the London samples.

347

In this study, n-alkan-2-ones have similar homologue distributions and C_{max} (C_{19} or C_{20}) (Table 2) at RU, WM and EL sites, and the total concentration from C_{16} to C_{23} accounts for 76.0%, 76.1% and 68.0% of \sum n-alkan-2-ones, respectively. The CPI values for n-alkan-2-ones ranged from 0.57 to 1.23 at the RU, MR and WM sites and were not indicative of biogenic input, and were considered

to mainly originate from anthropogenic activities and OH oxidation of anthropogenic n-alkanes. At EL, the CPI of 1.57 is probably indicative of a biogenic contribution in suburban south London. A difference was observed at the MR site, the n-alkan-2-ones with carbon atoms numbering from C_{12} to C_{18} accounting for 72.0% of \sum n-alkan-2-ones, with the C_{max} being at C_{16} . The C_{max} of n-alkan-3-ones was at C_{16} at the MR site, at EL, $C_{max} = C_{16}$, WM, $C_{max} = C_{17}$ and at RU, $C_{max} = C_{17}$, respectively.

358

359 **3.3.2** The ratios of n-alkanes/n-alkanals

360 Diesel engine emission studies have been conducted previously in our group; details of the engine set 361 up and exhaust sampling system are given elsewhere (Alam et al., 2016b). Briefly, the steady-state 362 diesel engine operating conditions were at a load of 5.90 bar mean effective pressure (BMEP) and a 363 speed of 1800 revolutions per minute (RPM), and samples (n=14) were collected both before a diesel 364 oxidation catalyst (DOC) and after a diesel particulate filter (DPF). The n-alkanes (C_{12} - C_{37}) and 1-365 alkanals ($C_9 - C_{18}$) were quantified in the particle samples, while n-alkanones were not identified because their concentrations were lower than the limits of (detection 0.01–0.15 ng m⁻³). The emission 366 367 concentrations of n-alkanals ranged from 7.10 to 53.2 μ g m⁻³ (before DOC) and 1.20 to 11.5 μ g m⁻³ 368 (after DPF), respectively, and the ratios of alkanes/alkanals (C_{12} - C_{18}) with the same carbon atom 369 numbers ranged from 0.15 to 0.23 (before DOC) and 0.52 to 7.60 (after DPF). The n-alkane/n-alkanal 370 (C₁₂-C₁₈) ratio at MR ranged from 0.92 to 5.03, while average ratios of 27.6 (RU), 22.1 (WM) and 371 15.1 (EL) were obtained, respectively. The similarity of the n-alkanes/n-alkanal ratio between MR 372 and the engine studies (after DPF) strongly suggests that diesel vehicle emissions were the main 373 source of 1-alkanals at MR.

374	The emission factors of total alkanes from diesel engines are reported to be 7 times greater than
375	gasoline engines (Perrone et al., 2014), with n-alkanals with carbon atoms numbering lower than C_{11}
376	being quantified in the exhaust from gasoline engines (Schauer et al., 2002b; Gentner et al., 2013).
377	The n-alkane/n-alkanal (C_8 - C_{10}) ratio with the same carbon numbers ranged from 5.60 to 14.3,
378	suggesting that gasoline combustion may be another source of atmospheric n-alkanals.
379	
380	Studies of n-alkanals showed that aldehydes have high reactivity when the OH radical attacks the
381	aldehyde moiety (Chacon-Madrid and Donahue, 2011; Chacon-Madrid et al., 2010), and the rate
382	constants are more than 3 times those of n-alkanes with the same carbon number. The mechanism
383	and rate constants of H-abstraction by OH detailed in the Master Chemical Mechanism (MCM,
384	v3.3.1), were obtained via <u>http://mcm.leeds.ac.uk/MCM</u> , and used in the evaluation of our data.

386 3.3.3 Correlation analysis

387 Insights into the sources of carbonyls can be gained from correlation analysis with black carbon (BC) 388 and NO_x . This has the advantage of comparing relative concentrations of pollutants, rather than 389 absolute concentrations. The latter are strongly affected by weather conditions, making inter-site 390 comparisons difficult when sampling did not occur simultaneously. In London, both black carbon 391 and NO_x arise very substantially from diesel vehicle emissions (Liu et al., 2014; Harrison et al., 392 2012; Harrison and Beddows, 2017), and hence these are good measures of road traffic activity. The 393 concentrations of BC were simultaneously determined by the online instruments during the sampling 394 periods, with the average concentrations of 1.34, 1.94 and 3.58 μ g m⁻³ at the RU, WM and MR sites, 395 respectively. The data for NOx were provided by the national network sites, with the average

396	concentrations of 23.4 and 202 $\mu g \ m^{\text{-3}}$ at the EL and MR sites, respectively. At the MR site, the
397	concentrations of BC and NOx averaged 5.00 $\mu g \ m^{\text{-3}}$ and 281 $\mu g \ m^{\text{-3}}$ when southerly winds were
398	dominant compared to 2.60 and 128 $\mu g~m^{\text{-}3}$ for northerly winds. All correlations were carried out
399	with the sum of particle and vapour phases for the carbonyl compounds, and strong ($r^2 = 0.87$) and
400	weak ($r^2 = 0.12$) correlations between BC and NO _x were obtained when the southerly and northerly
401	winds were prevalent at MR, respectively. Marylebone Road is a street canyon site where a vortex
402	circulation is established by the wind. The effect is that on northerly wind sectors the sampling site
403	on the southern side of the road samples near-background air, while on southerly wind sectors, the
404	traffic pollution is carried to the sampling site, leading to elevated pollution levels affected heavily
405	by the traffic emissions. The strong correlation between BC and NO_x with southerly wind sectors is
406	a reflection of their emission from road traffic. In addition, the correlations between n-alkanals (C_8 -
407	C_{20}) and BC, and between n-alkanals (C_8 - C_{20}) and NO _x were calculated to assess the contribution of
408	vehicular emission (Table S3). The results showed that the correlations (r^2) between n-alkanals and
409	BC gradually decreased from 0.61 (C ₉) to $0.34(C_{20})$ at MR when the southerly winds were prevalent,
410	indicating that the distribution of n-alkanals, and especially the lower MW compounds, was
411	significantly impacted by the vehicular exhaust emissions. The average correlations at MR
412	(southerly winds) between n-alkanals and BC, and between n-alkanals and NO _x were $r^2 = 0.47$ and
413	$r^2 = 0.32$, respectively. These moderate correlations demonstrated that the vehicular emissions were
414	a substantial source of n-alkanals at MR, and result in the high background concentrations of n-
415	alkanals in London. The other probable sources of n-alkanals include cooking emissions, wood
416	burning, photooxidation of hydrocarbons and industrial emissions. Poorer correlations between n-
417	alkanals and BC (average $r^2 = 0.15$), and between n-alkanals and NO _x (average $r^2 = 0.15$) were

418	observed at MR in the north London background air sampled when northerly winds were prevalent.
419	There were very weak correlations (average $r^2 < 0.10$) between n-alkanals and BC, and between n-
420	alkanals and NO_x at the RU, WM and EL sites, which may be attributable to the high chemical
421	reactivity of n-alkanals. High concentrations of furanones (γ -lactones) are generated via the photo-
422	oxidation reaction of n-alkanals (Alves et al., 2001), and the total concentrations (particle and gas)
423	were up to 376, 279, 347 and 318 ng m ⁻³ at RU, WM, WL, and MR, respectively for the sum of
424	furanone homologues (from 5-propyldihydro-2(3H)-furanone to 5-tetradecyldihydro-2(3H)-
425	furanone).

426

The relationships (r^2 values) between BC and NO_x and the n-alkan-2-ones were low at all sites, but 427 notably higher with southerly winds at MR (average $r^2 = 0.33$ and 0.35 for BC and NO_x respectively) 428 than for northerly winds ($r^2 = 0.16$ and 0.03 respectively). This is strongly suggestive of a 429 430 contribution from vehicle exhaust to n-alkan-2-one concentrations, but smaller than that for nalkanals. In the case of the n-alkan-3-ones, correlations averaged $r^2 = 0.25$ with BC and $r^2 = 0.21$ for 431 NO_x in southerly winds, compared to $r^2 = 0.08$ and $r^2 = 0.05$ respectively for northerly winds. This 432 433 is also suggestive of a small, but not negligible contribution of vehicle emissions to n-alkan-3-ones. 434 The very low correlations observed in background air for both n-alkan-2-ones and n-alkan-3-ones 435 with BC and NO_x are suggestive of the importance of non-traffic sources, probably including 436 oxidation of n-alkanes. The considerable predominance for n-alkan-2-one over n-alkan-3-one 437 concentrations may be indicative of a formation pathway from oxidation of condensed phase n-438 alkanes, but this is speculative as primary emissions may be dominant.

439

440 **3.4** The Partition Between Particle and Gas Phase

441 The partitioning coefficient K_p between particles and vapour was calculated in this study according 442 to the following equation defined by Pankow (1994): 443 $K_p = \frac{C_p}{C_a * TSP}$ 444 445 446 Where, C_p and C_g (µg m⁻³) are the concentration of the compounds in the particulate phase and 447 gaseous phase, respectively. TSP is the concentration of total suspended particulate matter ($\mu g m^{-3}$), 448 which was estimated from the PM_{10} concentration ($PM_{10}/TSP = 0.80$), and daily average PM_{10} 449 concentrations were taken from the national network sites. The partitioning coefficients K_p 450 calculated from our data and the percentages in the particulate form are presented in Table 2. For 451 the three types of carbonyls, the n-alkanals $>C_{16}$, n-alkan-2-ones $>C_{19}$, and n-alkan-3-ones $>C_{18}$ 452 were assumed to have negligible vapour concentrations, and the partitioning into the particulate 453 phase gradually increased from C₈ to high molecular weight compounds.

454

Log Kp was regressed against vapour pressure (VP_T) for the relevant temperature derived from
UManSysProp (http://umansysprop.seaes.manchester.ac.uk/) according to the following equation:

457

458
$$\log K_p = m \log(VP_T) + b$$

459

The calculated log K_p versus log (VP_T) for the three types of carbonyls was calculated for each day, and the results appear in the Table S4. Data from four sites were over the temperature range 0.40– 15.3 °C. A good fit to the data for n-alkan-2-ones ($r^2 = 0.54$ -0.94 at RU, 0.64-0.93 at WM, 0.43-

- 463 0.95 EL and 0.45-0.89 at MR) was obtained. It is notable that the fit to the regression equation as
 464 indicated by the r² value is appreciably higher at the MR site than at the other sites, especially in the
 465 case of the alkan-3-ones. This is not easily explained, except perhaps by an increased particle surface
 466 area at the MR site which may enhance the kinetics of gas-particle exchange, leading to partitioning
 467 which is closer to equilibrium.
- 468

469 4. CONCLUSIONS

470 Three groups of carbonyl compounds were determined in the particle and gaseous phase in London 471 and concentrations are reported for n-alkanals (C8-C20), n-alkan-2-ones (C8-C26) and n-alkan-3-ones 472 (C₈-C₁₉). The Marylebone Road site has the highest concentration of particle-bound n-alkanals, and 473 the average total concentration was up to 682 ng m⁻³, followed by 167 ng m⁻³ at EL, 117 ng m⁻³ at 474 WM and 82.6 ng m⁻³ at RU. The particulate n-alkanals were abundant in all samples at all four 475 measurement sites, accounting for more than 56.3% of total particle carbonyls. In addition, the 476 average total particle concentrations of n-alkan-2-ones and n-alkan-3-ones at four measurement sites were in the range of 58.5-186 ng m⁻³ and 5.65-39.4 ng m⁻³, respectively. Diagnostic criteria, 477 478 including molecular distribution, CPI, Cmax, ratios and correlations, were used to assess the sources 479 and their contributions to carbonyl compounds. The three groups of carbonyls have similar 480 molecular distributions and C_{max} values at the four measurement sites, and their low CPI values 481 (0.41-1.57) at the four sites indicate a weak biogenic input during sampling campaigns. Heavily 482 traffic-influenced air and urban background air were measured at the MR site when southerly and 483 northerly winds were prevalent respectively; correlations of $r^2 = 0.47$ and $r^2 = 0.32$ were obtained 484 between n-alkanals and BC, and between between n-alkanals and NOx, respectively in southerly

485	winds. Vehicle emissions appear to be an important source of n-alkanals, which is confirmed by the
486	similar ratios of n-alkanes/n-alkanals measured at MR (0.92-5.03) and in diesel engine exhaust
487	studies (0.52-7.6), resulting in a high background concentration in London. In addition, the OH-
488	initiated heterogeneous reactions of n-alkanes appear to be important sources of n-alkanones, even
489	though weak contributions from vehicular exhaust emissions were suggested by correlation analysis
490	with BC and NO_x in southerly winds at MR. Anthropogenic primary sources appear to account for
491	a large proportion of the alkan-2-one and alkan-3-one concentrations measured in London.
492	
493	In addition, the partitioning coefficients of carbonyls were determined from the relative proportions
494	of the particle and gaseous phases of individual compounds. The results of field measurements of
495	partitioning between particle and vapour phases showed generally a better fit at MR than at the other
496	three sites. The n-alkan-2-ones have a better fit at four sites than the n-alkanals and n-alkan-3-ones,
497	with $r^2 = 0.78 (0.54-0.94)$ at RU, 0.85 (0.64-0.93) at WM, 0.74 (0.43-0.95) EL and 0.70 (0.45-0.89)
498	at MR, respectively in a regression of log K_p versus the compound vapour pressure.
499	
500	ACKNOWLEDGEMENTS
501	Primary collection of samples took place during the FASTER project which was funded by the

502 European Research Council (ERC-2012-AdG, Proposal No. 320821). The authors would also like

503 to thank the China Scholarship Council (CSC) for support to R.L., and the Natural Environment

504 Research Council for support under the Air Pollution and Human Health (APHH) programme

505 (NE/N007190/1).

23

506	REFERENCE
507	
508	Alam, M. S., Stark, C., and Harrison, R. M.: Using variable ionization energy time-of-flight mass
509	spectrometry with comprehensive GC×GC to identify isomeric species, Anal. Chem., 88, 4211-
510	4220, http://www.doi.org/10.1021/acs.analchem.5b03122, 2016a.
511	
512	Alam, M. S., Zeraati-Rezaei, S., Stark, C. P., Liang, Z., Xu, H., and Harrison, R. M.: The
513	characterisation of diesel exhaust particles - composition, size distribution and partitioning,
514	Faraday. Discuss., 189, 69-84, http://www.doi.org/10.1039/C5FD00185D, 2016b.
515	
516	Alam, M. S., Zeraati-Rezaei, S., Liang, Z., Stark, C., Xu, H., MacKenzie, A. R., and Harrison, R.
517	M.: Mapping and quantifying isomer sets of hydrocarbons (\geq C 12) in diesel exhaust, lubricating oil
518	and diesel fuel samples using GC× GC-ToF-MS, Atmos. Meas. Tech., 11, 3047,
519	https://doi.org/10.5194/amt-11-3047-2018, 2018.
520	
521	Algrim, L. B., and Ziemann, P. J.: Effect of the Keto Group on yields and composition of organic
522	aerosol formed from OH radical-initiated reactions of ketones in the presence of NO _x , J. Phys.
523	Chem. A., 120, 6978-6989, http://www.doi.org/10.1021/acs.jpca.6b05839, 2016.
524	
525	Alves, C., Pio, C., and Duarte, A.: Composition of extractable organic matter of air particles from
526	rural and urban Portuguese areas, Atmos. Environ., 35, 5485-5496, https://doi.org/10.1016/S1352-
527	2310(01)00243-6, 2001.
528	
529	Andreou, G., and Rapsomanikis, S.: Origins of n-alkanes, carbonyl compounds and molecular
530	biomarkers in atmospheric fine and coarse particles of Athens, Greece, Sci. Total. Environ., 407,
531	5750-5760, http://dx.doi.org/10.1016/j.scitotenv.2009.07.019, 2009.
532	
533	Aschmann, S. M., Arey, J., and Atkinson, R.: Atmospheric chemistry of three C10 alkanes, J. Phys.
534	Chem. A., 105, 7598-7606, http://www.doi.org/10.1021/jp010909j, 2001.
535	
536	Bray, E., and Evans, E.: Distribution of n-paraffins as a clue to recognition of source beds,
537	Geochim. Cosmochim. Ac., 22, 2-15, https://doi.org/10.1016/0016-7037(61)90069-2, 1961.
538	
539	Chacon-Madrid, H., and Donahue, N.: Fragmentation vs. functionalization: chemical aging and
540	organic aerosol formation, Atmos. Chem. Phys., 11, 10553-10563, https://doi.org/10.5194/acp-11-
541	10553-2011, 2011.
542	
543	Chacon-Madrid, H. J., Presto, A. A., and Donahue, N. M.: Functionalization vs. fragmentation: n-
544	aldehyde oxidation mechanisms and secondary organic aerosol formation, Phys. Chem. Chem.
545	Phys., 12, 13975-13982, http://www.doi.org/10.1039/C0CP00200C, 2010.
546	
547	Cheng, Y., Li, SM., Leithead, A., and Brook, J. R.: Spatial and diurnal distributions of n-alkanes
548	and n-alkan-2-ones on PM 2.5 aerosols in the Lower Fraser Valley, Canada, Atmos. Environ., 40,

549 2706-2720, https://doi.org/10.1016/j.atmosenv.2005.11.066, 2006.

- 550 Duan, H., Liu, X., Yan, M., Wu, Y., and Liu, Z.: Characteristics of carbonyls and volatile organic
 551 compounds (VOCs) in residences in Beijing, China, Front. Env. Sci. Eng., 10, 73-84,
 552 http://www.doi.org/10.1007/s11783-014-0743-0, 2016.
 553
 554 Gentner, D. R., Worton, D. R., Isaacman, G., Davis, L. C., Dallmann, T. R., Wood, E. C., Herndon,
 555 S. C., Goldstein, A. H., and Harley, R. A.: Chemical composition of gas-phase organic carbon
- 556 emissions from motor vehicles and implications for ozone production, Environ. Sci. technol., 47,
- 557 11837-11848, http://www.doi.org/10.1021/es401470e, 2013.
- 558
- Gogou, A., Stratigakis, N., Kanakidou, M., and Stephanou, E. G.: Organic aerosols in Eastern
- Mediterranean: components source reconciliation by using molecular markers and atmospheric back
 trajectories, Org. Geochem., 25, 79-96, https://doi.org/10.1016/S0146-6380(96)00105-2, 1996.
- 562
- Han, Y., Kawamura, K., Chen, Q., and Mochida, M.: Formation of high-molecular-weight
- 564 compounds via the heterogeneous reactions of gaseous C8–C10 n-aldehydes in the presence of
- tmospheric aerosol components, Atmos. Environ., 126, 290-297,
- 566 http://dx.doi.org/10.1016/j.atmosenv.2015.11.050, 2016.
- 567
- 568 Harrison, R., Dall'Osto, M., Beddows, D., Thorpe, A., Bloss, W., Allan, J., Coe, H., Dorsey, J.,
- 569 Gallagher, M., and Martin, C.: Atmospheric chemistry and physics in the atmosphere of a
- 570 developed megacity (London): an overview of the REPARTEE experiment and its conclusions,
- 571 Atmos. Chem. Phys., 12, 3065-3114, https://doi.org/10.5194/acp-12-3065-2012, 2012.
- 572
- 573 Harrison, R. M., and Beddows, D. C.: Efficacy of recent emissions controls on road vehicles in
- 574 Europe and implications for public health, Sci. Rep-UK., 7, 1152,
- 575 http://www.doi.org/10.1038/s41598-017-01135-2., 2017.
- 576
- 577 Kwok, E. S., and Atkinson, R.: Estimation of hydroxyl radical reaction rate constants for gas-phase
 578 organic compounds using a structure-reactivity relationship: an update, Atmos. Environ., 29, 1685-
- 579 1695, https://doi.org/10.1016/1352-2310(95)00069-B, 1995.
- 580
- 581 Liu, D., Allan, J., Young, D., Coe, H., Beddows, D., Fleming, Z., Flynn, M., Gallagher, M.,
- 582 Harrison, R., and Lee, J.: Size distribution, mixing state and source apportionments of black carbon
- aerosols in London during winter time, Atmos. Chem. Phys., 14, https://doi.org/10.5194/acp-1410061-2014, 2014.
- 585
- 586 Oliveira, T. S., Pio, C., Alves, C. A., Silvestre, A. J., Evtyugina, M., Afonso, J., Fialho, P., Legrand,
- 587 M., Puxbaum, H., and Gelencsér, A.: Seasonal variation of particulate lipophilic organic
- 588 compounds at nonurban sites in Europe, J. Geophys. Res-Atmos., 112,
- 589 https://doi.org/10.1029/2007JD008504 2007.
- 590

- 592 smoke particulate matter, Fuel., 79, 515-536, http://dx.doi.org/10.1016/S0016-2361(99)00153-2,
- **593** 2000.

⁵⁹¹ Oros, D. R., and Simoneit, B. R. T.: Identification and emission rates of molecular tracers in coal

- Pankow, J. F.: An absorption model of gas/particle partitioning of organic compounds in the
 atmosphere, Atmos. Environ., 28, 185-188, https://doi.org/10.1016/1352-2310(94)90093-0, 1994.
- 596
- 597 Perrone, M. G., Carbone, C., Faedo, D., Ferrero, L., Maggioni, A., Sangiorgi, G., and Bolzacchini,
- 598 E.: Exhaust emissions of polycyclic aromatic hydrocarbons, n-alkanes and phenols from vehicles
- 599 coming within different European classes, Atmos. Environ., 82, 391-400,
- 600 https://doi.org/10.1016/j.atmosenv.2013.10.040, 2014.
- 601
- 602 Rogge, W. F., Hildemann, L. M., Mazurek, M. A., and Cass, G. R.: Sources of fine organic aerosol.
- 603 9. Pine, oak, and synthetic log combustion in residential fireplaces, Environ. Sci. technol., 32, 13-
- 604 22, http://www.doi.org/10.1021/es960930b, 1998.
- 605
- Ruehl, C. R., Nah, T., Isaacman, G., Worton, D. R., Chan, A. W. H., Kolesar, K. R., Cappa, C. D.,
 Goldstein, A. H., and Wilson, K. R.: The influence of molecular structure and aerosol phase on the
 heterogeneous oxidation of normal and branched alkanes by OH, J. Phys. Chem. A., 117, 3990-
- 609 4000, http://www.doi.org/10.1021/jp401888q, 2013.
- 610
- 611 Schauer, J. J., Kleeman, M. J., Cass, G. R., and Simoneit, B. R. T.: Measurement of emissions from
- 612 air pollution sources. 1. C1 through C29 organic compounds from meat charbroiling, Environ. Sci.
- 613 technol., 33, 1566-1577, http://www.doi.org/10.1021/es980076j, 1999.
- 614
- Schauer, J. J., Kleeman, M. J., Cass, G. R., and Simoneit, B. R. T.: Measurement of emissions from
 air pollution sources. 3. C1–C29 organic compounds from fireplace combustion of wood, Environ.
- 617 Sci. technol., 35, 1716-1728, http://www.doi.org/10.1021/es001331e, 2001.
- 618
- 619 Schauer, J. J., Kleeman, M. J., Cass, G. R., and Simoneit, B. R. T.: Measurement of emissions from
- air pollution sources. 4. C1–C27 organic compounds from cooking with seed oils, Environ. Sci.
- 621 technol., 36, 567-575, http://www.doi.org/10.1021/es002053m, 2002a.
- 622
- 623 Schauer, J. J., Kleeman, M. J., Cass, G. R., and Simoneit, B. R. T.: Measurement of emissions from
- 624 air pollution sources. 5. C1–C32 organic compounds from gasoline-powered motor vehicles,
- 625 Environ. Sci. technol., 36, 1169-1180, http://www.doi.org/10.1021/es0108077, 2002b.
- 626
- 627 Schilling Fahnestock, K. A., Yee, L. D., Loza, C. L., Coggon, M. M., Schwantes, R., Zhang, X.,
- 628 Dalleska, N. F., and Seinfeld, J. H.: Secondary organic aerosol composition from C12 alkanes, J.
- 629 Phys. Chem. A., 119, 4281-4297, http://www.doi.org/10.1021/jp501779w, 2015.
- 630
- 631 Yee, L. D., Craven, J. S., Loza, C. L., Schilling, K. A., Ng, N. L., Canagaratna, M. R., Ziemann, P.
- 632 J., Flagan, R. C., and Seinfeld, J. H.: Secondary organic aerosol formation from low-NO_x
- 633 photooxidation of dodecane: Evolution of multigeneration gas-phase chemistry and aerosol
- 634 composition, J. Phys. Chem. A., 116, 6211-6230, http://www.doi.org/10.1021/jp211531h, 2012.
- 635
- 636 Zhang, H., Worton, D. R., Shen, S., Nah, T., Isaacman-VanWertz, G., Wilson, K. R., and Goldstein,
- 637 A. H.: Fundamental time scales governing organic aerosol multiphase partitioning and oxidative
- 638 aging, Environ. Sci. technol., 49, 9768-9777, http://www.doi.org/10.1021/acs.est.5b02115, 2015.

- 639 Zhao, Y., Hu, M., Slanina, S., and Zhang, Y.: The molecular distribution of fine particulate organic
- 640 matter emitted from Western-style fast food cooking, Atmos. Environ., 41, 8163-8171,
- 641 http://dx.doi.org/10.1016/j.atmosenv.2007.06.029, 2007a.
- 642
- 643 Zhao, Y., Hu, M., Slanina, S., and Zhang, Y.: Chemical compositions of fine particulate organic
- 644 matter emitted from Chinese cooking, Environ. Sci. Technol., 41, 99-105,
- 645 http://www.doi.org/10.1021/es0614518, 2007b.
- 646
- 647
- 648
- 649
- 650

651 652	TABLE L	EGENDS
653 654 655	Table 1.	The carbon preference index (CPI) and C_{max} for n-alkanals, n-alkan-2-ones, and n-alkan-3-ones in this study and published data.
656	Table 2.	Percentages of particle phase form and the partitioning coefficient Kp.
657 658 659	FIGURE I	LEGENDS
660 661 662 663	Figure 1.	Map of the sampling sites. RU-Regents University (15 m above ground); WM- University of Westminster (20 m above ground); EL-Eltham; MR-Marylebone Road (south side).
664 665 666 667	Figure 2.	The average total concentration of particle-bound n-alkanals (C_8 - C_{20}), n-alkan-2-ones (C_8 - C_{26}), and n-alkan-3-ones (C_8 - C_{19}), for each sampling period and site. The error bars indicate one standard deviation.
668 669 670	Figure 3.	Time series of particle-bound $\sum 1$ -alkanals, $\sum n$ -alkan-2-ones and $\sum n$ -alkan-3-ones at RU, WM, EL, and MR sites.
671 672 673 674 675	Figure 4.	The molecular distribution of particle-bound carbonyl compounds at four sites (RU, WM, EL, and MR).

Location	G	n-alk	canals	n-alka	n-2-ones	n-alkan-	3-ones	
Sampling site	sampung period	CPI	C _{max}	CPI	Cmax	CPI	C _{max}	Kerefence
RU,								
surrounded by Regent's Park,	23 Jan - 19 Feb	0.52	C_8	1.23	C 19	1.30	C ₁₇	Present study
15 m above ground								
WM,	24 I.m. 20 E.A	0 /1	כ	0.00	כ	1 76	נ	Decomet attacks
20 m above ground	24 Jan - 20 Feb	0.41	Ç8	0.99	C20	1.20	C17	r tesetti study
EL,		150	C	1 67	C	1 04	c	
suburb of London	20 FEO - 21 Mai	0.71	Ç8	1.57	C20	1.04	C16	r tesetti study
MR,	77 Mar - 18 Ann	1 07	נ	0 57	Ċ	1 12	Ċ	Drecent study
adjacent to Marylebone road	22 Mai - 10 Mpi	1.07	ç	0.01	C 16	1.12	C 16	r tesetit study
Athens, Athinas St.	August	1.49	C_{15}, C_{17}	1.09	C_{18}, C_{21}, C_{19}			(Andreou and
Urban roadside	March			3.26	C_{21}, C_{19}, C_{20}			Rapsomanikis, 2009)
Athens, AEDA, Urban,	March			۲ <i>۱</i> د	ר ר			(Andreou and
20 m above ground				£.41	C_{19}, C_{18}, C_{20}			Rapsomanikis, 2009)
Heraklion, Greece	Spring /summer	0 00 1 10	נ	1 20 1 20	ר ר			(Corrow at al 1006)
Urban 15 m above ground		0.00-1.40	C_{26}, C_{28}	1.30-1.60	C_{23}, C_{29}, C_{31}			(Oogou et al., 1990)
Vancouver, Canada				1 22	נ נ			(Changet al 2006)
Roadway tunnel				1.55	C_{17}, C_{19}			(Cheng et al., 2000)
Aveiro, Portugal	Summer		C_{22}, C_{23}, C_{26}		C_{26}, C_{28}, C_{30}			
Suburban	Winter							(Oliveira et al., 2007)
K-Puszta, Hungary	Summer		C_{24}, C_{26}, C_{28}		C_{24}, C_{26}, C_{28}			

Table 1. The carbon preference index (CPI) and C_{max} for n-alkanals, n-alkan-2-ones, and n-alkan-3-ones in this study and published data.

				RU						WM		
	n-a	lkanals	n-alk	an-2-ones	n-alk	an-3-ones	n-a	lkanals	n-alk	an-2-ones	n-alk	an-3-ones
	%	Кр	%	Кр	%	Кр	%	Кр	%	Кр	%	Кр
C ₈	82.9	1.16E-04	18.4	5.37E-06	23.9	7.47E-06	80.2	9.09E-05	13.3	3.43E-06	34.1	1.16E-05
C9	69.2	5.37E-05	14.5	4.03E-06	16.6	4.74E-06	60.5	3.43E-05	15.6	4.16E-06	28.7	9.05E-06
C ₁₀	75.3	7.27E-05	13.6	3.77E-06	7.43	1.92E-06	82.1	1.03E-04	14.4	3.77E-06	23.3	6.82E-06
C11	45.5	1.99E-05	21.4	6.49E-06	12.8	3.49E-06	62.4	3.72E-05	20.1	5.65E-06	36.3	1.28E-05
C_{12}	74.8	7.08E-05	25.0	7.96E-06	31.3	1.09E-05	73.7	6.29E-05	28.8	9.07E-06	22.7	6.60E-06
C ₁₃	82.9	1.15E-04	61.0	3.74E-05	35.4	1.31E-05	82.2	1.04E-04	48.9	2.14E-05	62.5	3.74E-05
C ₁₄	82.8	1.15E-04	49.5	2.34E-05	35.5	1.31E-05	75.8	7.04E-05	31.8	1.05E-05	25.6	7.74E-06
C ₁₅	99.5	5.01E-03	84.1	1.26E-04	50.5	2.44E-05	100		85.0	1.27E-04	68.5	4.87E-05
C ₁₆	100		91.4	2.53E-04	70.3	5.64E-05	100		89.6	1.93E-04	91.7	2.47E-04
C ₁₇	100		91.5	2.55E-04	100		100		85.9	1.36E-04	91.5	2.42E-04
C ₁₈	100		94.1	3.80E-04	100		100		84.8	1.26E-04	99.4	4.02E-03
C ₁₉	100		99.1	2.69E-03			100		100			
C_{20}	100		100				100		100			
C_{21}			100						100			
C ₂₂			100						100			
C ₂₃			100						100			
C ₂₄			100						100			
C ₂₅			100						100			
C ₂₆			100						100			

Table 2. Percentages of particle phase form and the partitioning coefficient Kp.

	-		-	El	-				_	MR		
	n-a	lkanals	n-alk	an-2-ones	n-alk	an-3-ones	n-a	lkanals	n-alk	an-2-ones	n-alk	an-3-ones
	%	Кр	%	Кр	%	Кр	%	Кр	%	Кр	%	Кр
C ₈	92.7	6.53E-04	24.9	1.72E-05	31.9	2.43E-05	90.0	2.94E-04	28.2	1.28E-05	43.0	2.46E-05
C9	92.2	6.16E-04	38.0	3.18E-05	44.4	4.15E-05	89.9	2.89E-04	27.0	1.20E-05	39.1	2.09E-05
C ₁₀	90.5	4.96E-04	47.6	4.70E-05	47.0	4.59E-05	91.7	3.62E-04	61.1	5.12E-05	20.4	8.33E-06
C11	87.0	3.47E-04	72.3	1.35E-04	81.9	2.34E-04	87.4	2.26E-04	50.2	3.28E-05	33.1	1.61E-05
C ₁₂	92.9	6.73E-04	83.4	2.60E-04	66.4	1.02E-04	93.0	4.30E-04	88.5	2.51E-04	28.1	1.28E-05
C ₁₃	95.6	1.12E-03	82.2	2.40E-04	65.7	9.92E-05	96.1	8.04E-04	87.7	2.33E-04	46.2	2.79E-05
C ₁₄	91.4	5.52E-04	90.3	4.80E-04	59.1	7.48E-05	95.2	6.51E-04	95.9	7.61E-04	72.0	8.38E-05
C15	96.7	1.53E-03	94.5	8.98E-04	84.4	2.80E-04	100		96.9	1.02E-03	83.8	1.69E-04
C ₁₆	100		96.7	1.41E-03	89.0	4.18E-04	100		96.4	8.70E-04	88.0	2.38E-04
C17	100		95.1	1.00E-03	81.5	2.28E-04	100		96.0	7.73E-04	88.0	2.39E-04
C ₁₈	100		64.6	9.44E-05	85.0	2.93E-04	100		92.5	4.04E-04	100	
C ₁₉	100		100				100		100		100	
C ₂₀	100		100				100		100			
C ₂₁			100						100			
C ₂₂			100						100			
C23			100						100			
C ₂₄									100			

Fig. 1. Map of the sampling sites. RU-Regents University (15 m above ground); WM-University of Westminster (20 m above ground); EL-Eltham; MR-Marylebone Road (south side).

Fig. 2. The average total concentration of particle-bound n-alkanals (C_8 - C_{20}), n-alkan-2-ones (C_8 - C_{26}), and n-alkan-3-ones (C_8 - C_{19}), for each sampling period and site. The error bars indicate one standard deviation.

Fig. 3. Time series of particle-bound Σ 1-alkanals, Σ n-alkan-2-ones and Σ n-alkan-3-ones at RU, WM, EL, and MR sites.

Fig. 4. The molecular distribution of particle-bound carbonyl compounds at four sites (RU, WM, EL, and MR).